JORNADAS JECNICAS

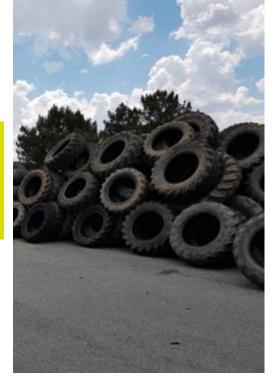
Inovação em Pavimentação

Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

18 de abril de 2023 | 09h00 às 13h00 | Auditório 1 | Campus do Pragal

JORNADAS JECNICAS

Inovação em Pavimentação

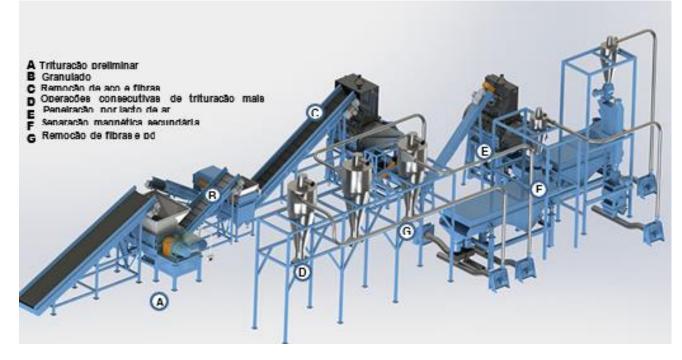

Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

CLÁUSULAS TÉCNICAS ESPECIAIS TIPO PARA MISTURAS BETUMINOSAS COM BORRACHA RECICLADA DE PNEUS, REAGIDA E ATIVADA (RAR)

Luís Quaresma

ÍNDICE

Inovação em Pavimentação


Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

- 1 GRANULADO DE BORRACHA COMO MODIFICADOR DO BETUME
- 2 UTILIZAÇÃO DE BORRACHA REAGIDA E ACTIVADA (RAR)
 - Projeto desenvolvido no âmbito do Protocolo IP-UL
 - Propriedades do ligante (betume + RAR)
 - Propriedades das misturas betuminosas com RAR
- 3 RECOMENDAÇÕES PARA PROJECTO COM MISTURAS BETUMINOSAS COM RAR

Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

PRODUÇÃO DE GRANULADO DE BORRACHA RECICLADO DOS PNEUS USADOS

Esquema representativo do processo à temperatura ambiente (adaptado de Reschner, 2006)

Categorias de materiais reciclados de pneus em fim de vida de acordo com a DNP CEN/TS 14243 [2010]

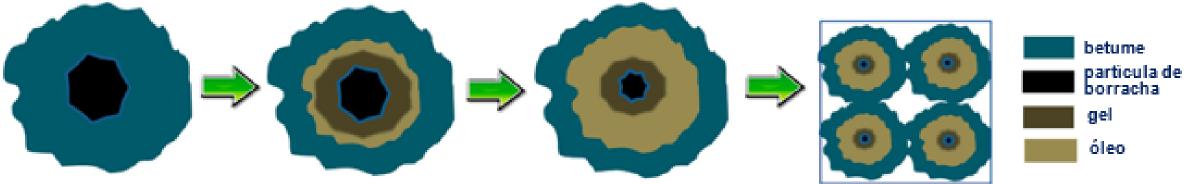
Tipo de reciclado	Dimensão granulométrica
Tipo de reciciado	mm
Corte	> 300
Shred	20 a 400
Chip	10 a 50
Granulado de borracha	0,8 a 20 (em diversas frações com dimensão diferente)
Pó de borracha	< 0,8

PRINCIPAIS PROCESSOS PARA GRANULAÇÃO

"Chips"

Granulado de borracha

- Processo Criogénico (borracha a cerca de -80 °C



Fase 0

Inovação em Pavimentação

Misturas Beturninosas com Borracha Reaglida e Ativada (RAR).

GRANULADO DE BORRACHA COMO MODIFICADOR DO BETUME

Fase 1: Aumento de volume

à interface betume-borracha.

Fase 2: Início da degradação

As partículas de borracha O aumento de volume das partículas de começam a aumentar de borracha prossegue.. Entretanto, a volume absorvendo as frações degradação química ocorre, com a leves do betume e formam rotura da rede reticulada e das cadeias uma camada de gel adjacente de polímero. Partículas de borracha expandidas são divididas em menores devido à destruição da estrutura da rede

Fase 3: Degradação e dissolução completa

A degradação das partículas de borracha continua. progredindo até que seiam completamente dissolvidas na matriz do beturne, produzindo um ligante homogéneo.

Estágios da interacção entre betume e borracha (adaptado Wang et al, 2020)

Rede permanente de ligações cruzadas (adaptado Mark et al, 2013)

MODIFICAÇÃO DE BETUME COM BORRACHA RECICLADA DOS PNEUS USADOS

Inovação em Pavimentação

Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

A degradação e dissolução de borracha no betume é muito limitada

A degradação e dissolução de borracha no betume é muito elevada. Processo realizado em central própria ou, no caso de uma percentagem elevada de borracha (≥ 18%), realizado na central de fabrico das misturas betuminosas

VANTAGENS E DIFICULDADES NA VIA HÚMIDA

Inovação em Pavimentação Misturas Betuminosas com Borracha Reagida e Ativada (RAR)

VANTAGENS

- i. Misturas com elevada resistência à propagação de fendilhamento para colocação em reforço de pavimentos fortemente fendilhados);
- ii. Misturas com **elevada resistência à deformação permanente**, a utilizar em locais com condições tráfego intenso e/ou temperaturas elevadas;
- iii.Misturas com **elevada resistência à fadiga**, a utilizar em locais com condições tráfego intenso;
- iv.Misturas com uma elevada resistência ao envelhecimento e à oxidação, a utilizar em camadas de desgaste;
- v. Redução do ruído gerado no contacto entre o pneu e a superfície do pavimento
- vi.Redução dos impactes ambientais, uma vez que a reciclagem da borracha de pneus usados promove uma significativa valorização energética dos resíduos de pneus e uma redução da utilização de recursos naturais

DIFICULDADES

- i. O fabrico de BB através do processo de modificação por via húmida envolve a utilização de temperaturas muito elevadas (superiores a 190 °C) durante um período de reacção com duração significativa (45 minutos até 1 hora);
- ii. O processo de modificação por via húmida obriga à instalação de uma unidade de fabrico do BB, pelo que apresenta maior complexidade do que o fabrico com betumes não modificados;
- iii. Após longos períodos de armazenamento existe a necessidade de reaquecer o BB;
- iv.Uma deficiente percepção da relação custodesempenho, uma vez que o custo das misturas betuminosas com BB é superior ao das misturas betuminosas com betumes não modificados (superior em 20% a 100%).

Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

BORRACHA DE PNEUS REAGIDA E ACTIVADA – RAR

Betume puro

Filer mineral ativo

- ■Introdução de um produto com potencial semelhante ao obtido na via húmida
- Resolução das dificuldades no fabrico do betume modificado com borracha (usuais na via húmida)
- Possibilidade de aumento na percentagem de granulado de borracha utilizada (aumento de cerca de 18% para cerca de 25%)

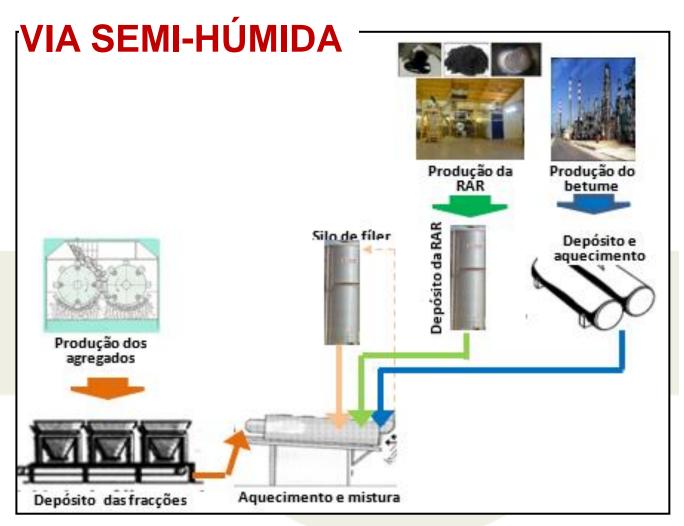
RAR e seus materiais constituintes

RAR pode ser produzida através da mistura a quente dos seus constituintes durante um curto período de tempo, sendo posteriormente realizada a ativação através de um processo especialmente concebido para formar um granulado de borracha seco ativado. O betume deve ser um betume puro com uma elevada penetração, embora em geral não superior à da classe 100/200

Uma composição típica de RAR corresponde a 62 a 65 % de borracha, 22 % de betume puro e 16 % de fíler mineral ativo. Após a reação e arrefecimento dos componentes no misturador, é adicionado um suplemento de 10 % de fíler no misturador para um envolvimento final de cada partícula de RAR, prevenindo fenómenos de coagulação.

Misturas Betuminosas com Borracha Reagida e Ativada (RARI)

CONFERÊNCIAS "ASPHALT RUBBER" E "RUBBERIZED ASPHALT RUBBER"


A experiência na utilização de betumes modificados com borracha encontra-se largamente divulgada nas actas das Conferências realizadas de três em três anos com a designação "Asphalt Rubber" entre 2000 e 2012 e "Rubberized Asphalt Rubber" em 2015 e em 2022, tendo a última conferência sido realizada em Málaga (Espanha) em 2022.

Inovação em Pavimentação Misturas Beturninosas com Borracha Resalda e Ativada (RARI)

UTILIZAÇÃO DE RAR EM MISTURAS BETUMINOSAS

- A modificação do betume pela RAR não exige, tal como acontece no fabrico de betume modificado com alta percentagem de borracha utilizando a via húmida, a instalação de equipamento misturador adequado para o efeito.
- A RAR deve ser introduzida na misturadora da mistura betuminosas a quente após a entrada do agregado, incluindo fíler. A colocação do betume será realizada posteriormente.
- Deve existir um depósito alimentador para a RAR (por exemplo o silo usualmente utilizado para o fíler comercial, caso este esteja disponível, ou o depósito para a usual introdução de fibras), para colocação doseada e direta no misturador da central.
- A temperatura do betume deverá ser 175 a 185°C e a dos agregados deverá ser tal que a mistura betuminosa a temperatura de mistura seja de 180°C ± 2°C.,
- A mistura de RAR com o agregado, incluindo fíler, deve ser realizada durante um período não inferior a 8 segundos

Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

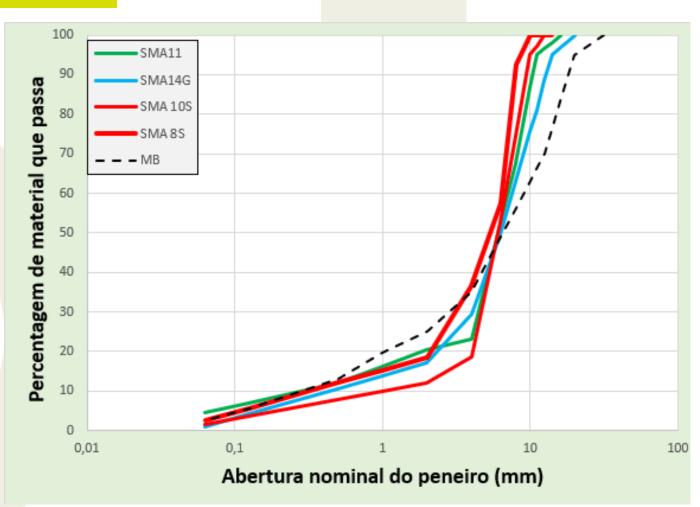
PROJECTO IP-UL PARA UTILIZAÇÃO DE RAR EM MISTURAS BETUMINOSAS

MISTURAS BETUMINOSAS COM ADIÇÃO DE RAR

CLÁUSULAS TÉCNICAS ESPECIAIS

- As especificações foram desenvolvidas em projeto envolvendo a Infraestruturas de Portugal (IP) e a Universidade Lusófona (UL)
- Participaram produtores, projetistas, empreiteiros
- Foram utilizados estudos já realizados e efetuados ensaios complementares
- Foi avaliado o desempenho
- Aplicado em obra rodoviária

NOVEMBRO 2022



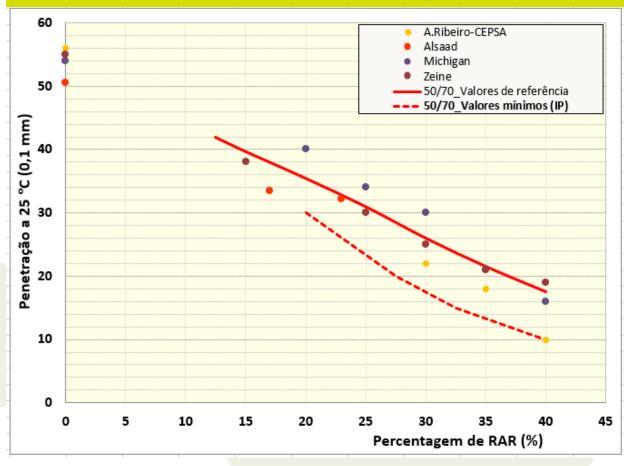
Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

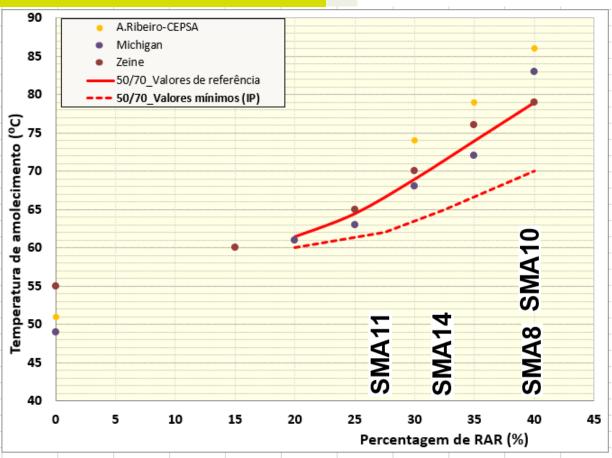
UTILIZAÇÃO DE RAR EM MISTURAS BETUMINOSAS

- As misturas têm um muito elevado volume de vazios no esqueleto mineral para permitir disponibilizar volume para elevadas dosagens de ligante
- A borracha tem uma densidade muito inferior ao do pó mineral, de cerca de 1
- Ao agregados têm uma granulometria fortemente descontínua e uma reduzida percentagem de finos
- Apesar de ser utilizada uma percentagem de ligante significativamente mais elevada que a das usuais misturas SMA, não é necessária a utilização de fibras para limitar o escorrimento
- A definição dos fusos granulométricos visou a obtenção de uma espessura mínima da película de betume sobre as partículas de agregado de 12 µm

Misturas Beturninosas com Borracha Reaglida e Ativada (RAR)

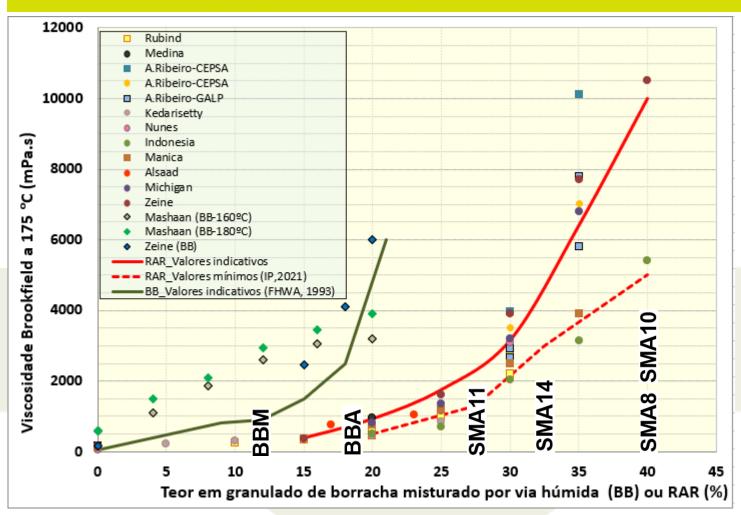
UTILIZAÇÃO DE RAR EM MISTURAS BETUMINOSAS

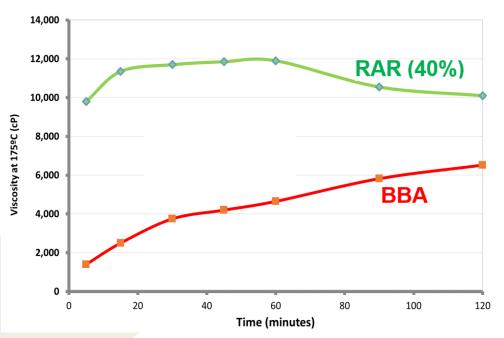

Mistura betuminosa	Designação abreviada	D _{máx} do agregado (mm)	Percentagem ponderal de RAR no ligante	Camada	Espessura de <u>projecto</u> (m)
de RAR	MB 20 RAR	20	18 – 22	Ligação, Regularização, Base	0,05 a 0,09
Mistura betuminosa SMA com adição de RAR	SMA 11 RAR	11	25 – 30	Desgaste	0,03 a 0,05
Mistura betuminosa SMA de grande	SMA 14G RAR	14	30 – 35	Desgaste	0,04 a 0,06
descontinuidade com adição de RAR	SIVIA 140 KAK	14	30 33	Ligação, Regularização	0,04 a 0,06
Mistura betuminosa SMA super	SMA 10S RAR	10	20 42	Desgaste	0,025 a 0,04
***************************************	SMA 8S RAR	8	38 – 42	Desgaste	0,02 a 0,04



Misturas Beturninosas com Borracha Reagida e Ativada (RARI

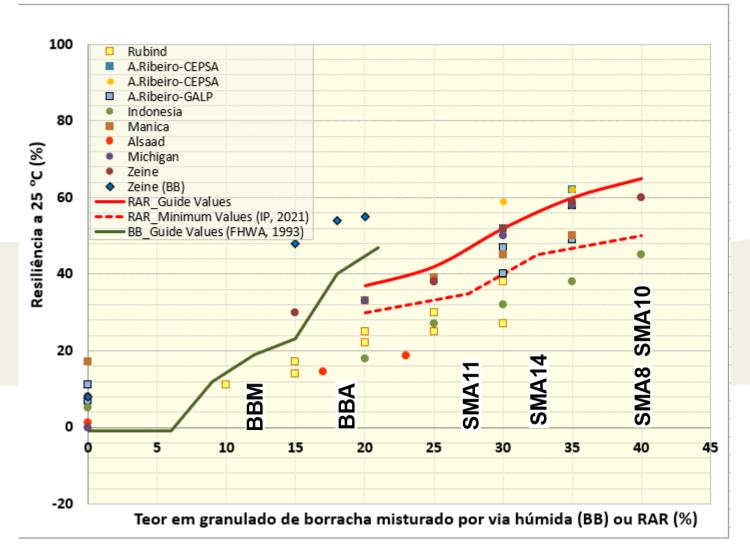
PROPRIEDADES DO LIGANTE – VARIAÇÃO DA CONSISTÊNCIA COM A TEMPERATURA





Misturas Beturninosas com Borracha Reagida e Ativada (RAR)

PROPRIEDADES DO LIGANTE - VISCOSIDADE


Variação da viscosidade do betume modificado em função do tempo de mistura

Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

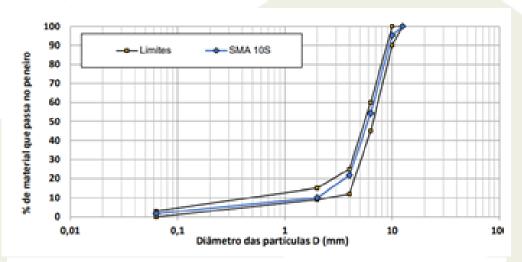
PROPRIEDADES DO LIGANTE – RESILIÊNCIA A 25°C

Utilização da especificação EN 13880-3:2003 (com procedimento idêntico ao da norma ASTM D 5329-96), que consiste em aplicar a uma amostra de betume, a 25°C, um deslocamento de 10 mm, por meio de uma esfera metálica medindo-se, em seguida, a recuperação elástica da amostra num intervalo de tempo de 20 segundos

Misturas Beturninosas com Borracha Reagida e Ativada (RAR)

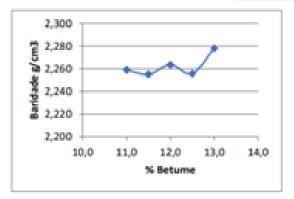
PROPRIEDADES DO LIGANTE – REQUISITOS DAS CLÁUSULAS TÉCNICAS ESPECIAIS TIPO

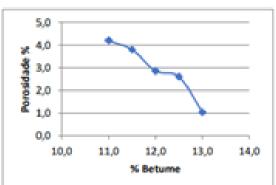
Ради	sisites/Propriedades	Referência	Unidade	Valores no	minais para	percentagem	de ligante:
Kequ	usitos/ Propriedades	normativa	Unidade	18 a 22 %	25 a 30%	30 a 35%	38 a 42%
Consistência à temperatura de serviço intermédia	Penetração a 25ºC	NP EN 1426	0,1 mm	> 30	> 20	> 15	> 10
Consistência à temperatura de serviço elevada	Temperatura de amolecimento	NP EN 1427	°C	≥ 60	≥ 62	≥ 65	≥ 70
	Penetração retida	NP EN 1426	%	≥ 60	≥ 60	≥ 60	≥ 60
Durabilidade (Resistência ao	Aumento da temperatura de amolecimento	NP EN 1427	°C	Classe 2 ≤ 10	Classe 2 ≤ 10	Classe 2 ≤ 10	Classe 2 ≤ 10
envelhecimento – RTFOT a 163°C,	Redução da temperatura de amolecimento	NP EN 1427	°C	≤ 5	≤ 5	≤ 5	≤ 5
NP EN 12607-1)	Variação de massa (valor absoluto)	NP EN 12607-1	%	Classe 4 ≤ 0,8	Classe 4 ≤ 0.8	Classe 4 ≤ 0,8	Classe 4 ≤ 0,8
	Resiliência	ASTM D 5329	%	≥ 30	≥ 35	≥ 45	≥ 50
Outres requisites	Viscosidade dinâmica a 175°C após 5 min (VIS 5 min @ 175°C)	EN 13302	MPa.s	≥ 500	≥ 1300	≥ 3000	≥ 5000
Outros requisitos	Viscosidade dinâmica a 175ºC após 120 min	EN 13302	MPa.s	-		n @ 175°C min @ 175°C	,
	Temperatura de inflamação	EN ISO 2592	°C	≥ 235	≥ 235	≥ 235	≥ 235

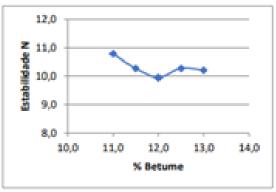


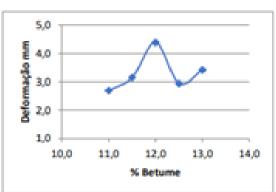
Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

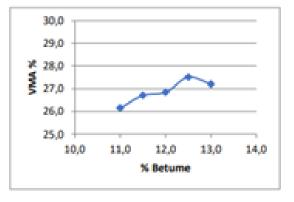
COMPOSIÇÃO DA MISTURA

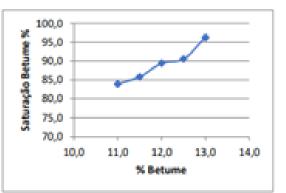

Para a definição da composição são conduzidos estudos pelo método Marshall (EN 12697-30 e EN 12697-34) em associação com requisitos adicionais baseados em ensaios relacionados com o desempenho

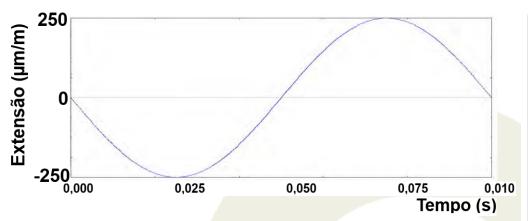

Formulação da mistura SMA 10S RAR na beneficiação da EN10

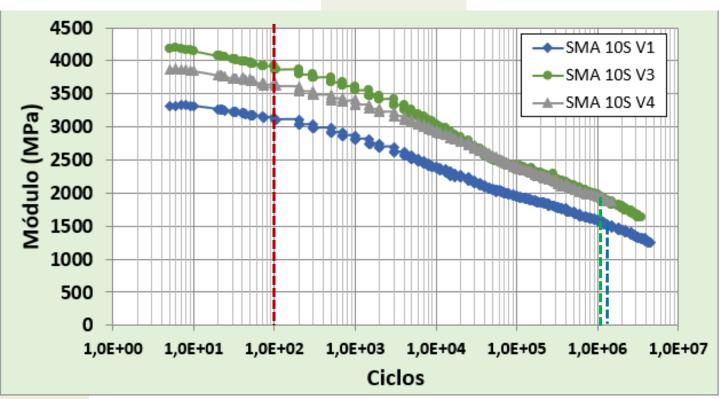



Fuso e granulometria da mistura


Fração granulométrica 0/4 mm	13%
Fração granulométrica 4/10 mm	87%
Percentagem de ligante (betume 50/70 + RAR)	. 11,5%
Percentagem de RAR no ligante	40%



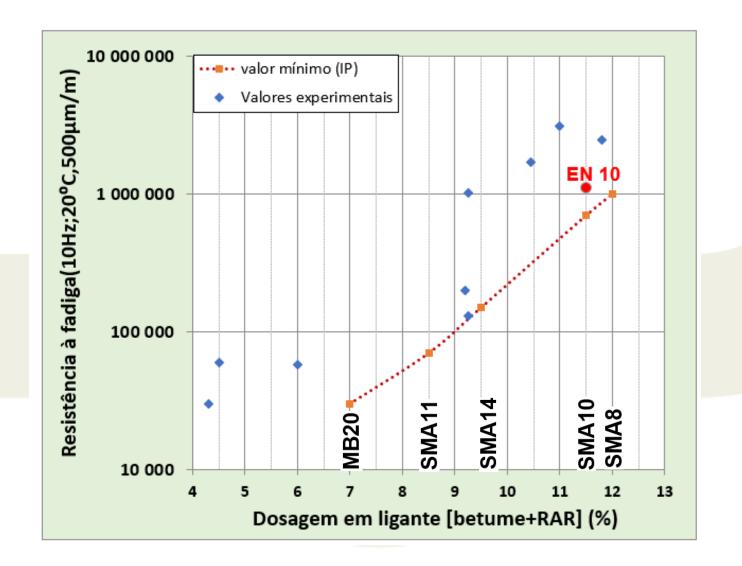



Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

PROPRIEDADES DA MISTURA- DEFORMABILIDADE E RESISTÊNCIA À FADIGA

Utilização da especificação EN 12697-24:2012, com ensaio de flexão em quatro pontos sobre provetes prismáticos com frequência de 10 Hz, temperatura de 20°C e variação entre o máximo e o mínimo de extensão de 500 µm/m.

O número de ciclos que exprime à resistência à fadiga é aquele em que o módulo decresce para metade do valor inicial. É considerado valor inicial do módulo om que é obtido após 100 ciclos.


Resultados obtidos em obra na EN 10, perto de Setúbal, em 2022

Misturas Betuminosas com Borracha Reaglida e Ativada (RARI)

PROPRIEDADES DA MISTURA- REQUISITOS DE RESISTÊNCIA À FADIGA

Estabilidade, máx.

Estabilidade, mín.

Deformação, máx.

Deformação, mín.

Quociente Marshall

mistura de agregados

à Taxa de deformação

máxima,

máxima, WTS_{AIR}

Profundidade

rodeira

PRDATE

Percentagem de ligante por ignição

Resistência à fadiga (Número de ciclos,

Relação ponderal de RAR /ligante

Sensibilidade à água, ITSR, mín

Escorrimento de betume, máx

normativa

EN12697-34

EN12697-8

EN12697-8

MIL-STD-

620A

EN12697-39

EN12697-24

EN12697-12

Requisitos e propriedades

Percentagem de ligante betuminoso

Indice de Resistência Conservada

(IRC) em ensaios de compressão

Características

Marshall

Vazios na

(VMA), mín.

Porosidade, Vm.

(betume+RAR)

Marshall, mín.

Resistência

Deformação

Permanente

("Wheel-

tracking")

mín.)

betuminoso

	de Portugal
--	-------------

Unidade

kN

kN

mm

mm

kN/mm

%

%

 $mm/10^{3}$

ciclos de

carga

%

ciclos de

carga

%

%

%

Condições específicas dos ensaios

EN 12697-8 - Calculada com base na baridade máxima teórica (a) - determinada

segundo a EN 12697-5, procedimento A,

em água e na baridade (b) determinada

segundo a EN 12697-6, procedimento B, provete saturado com a superfície seca EN 12697-8 - Calculada com base na baridade máxima teórica (b) - determinada segundo a EN 12697-5, procedimento A,

em água e na baridade (c) - determinada

segundo a EN 12697-6, procedimento B,

Equipamento pequeno, procedimento B,

Determinada para a percentagem óptima de ligante da mistura em estudo (opt) e

para mais quatro percentagens de ligante: opt- 1%; opt-0,5%; opt+0,5%; opt+1% ^(d) Ensaios com frequência de 10 Hz,

temperatura de 20°C e extensão máxima

de 500 x 10-6; o resultado é o valor médio

EN 12697-30 – 75 pancadas, temperatura

provete saturado com a superfície seca

Moldagem dos provetes: EN 12697-30

EN12697-22 acondicionamento ao ar, temperatura do

Moldagem dos provetes: EN 12697-30

75 pancadas

75 pancadas

ensaio a 60°C

de três provetes

do ensaio: 15ºC

Moldagem dos provetes:

EN 12697-18 Ensaio de Schellenberg em copo de vidro

SMA 8S

surf RAR

Smax15

Smin7.5

F5

F3

Valor a

declarar

Vmin1,5-

Vmax3.5

Bmin11,5

90

0.08

1.5 x 106

38 a 42

 $ITSR_{90}$

0.3

Valor a declarar

Valor a declarar

SMA 10S

surf RAR

Valor a

declarar

Smin8

F5

F3

Valor a

declarar

Vmin3,0-

Vmax5.5

Bmin11.0

90

0,06

1,2 x 106

38 a 42

 $ITSR_{90}$

0.3

VMAmin24 VMAmin25

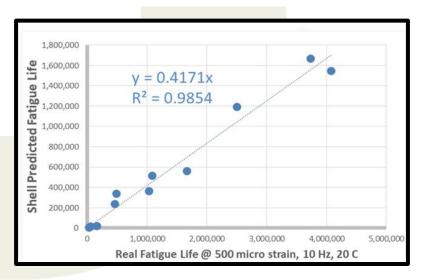
Inovação em Pavimentação

Misturas Beturninosas com Borracha Reaglida e Ativada (RAR).

PROPRIEDADES DA MISTURA -REQUISITOS DAS CLÁUSULAS TÉCNICAS **ESPECIAIS TIPO**

Requisitos/propriedades para misturas betuminosas SMA super-descontinuas

RECOMENDAÇÕES PARA PROJECTO- RESISTÊNCIA À FADIGA


Inovação em Pavimentação Misturas Beturninosas com Borracha Reagida e Ativada (RARI)

Previsão de resistência à fadiga pela Shell:

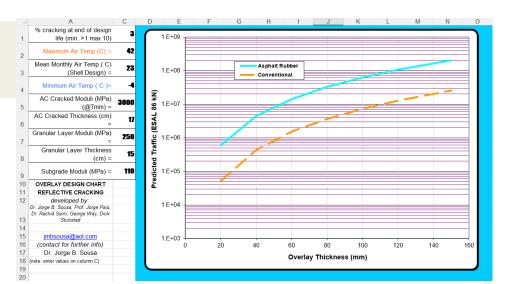
$$\varepsilon_t = ((0.856 \times V_b + 1.08) \times E^{-0.36} \times N^{-0.2})$$

Em que E é o módulo da mistura (Pa), N é o número de aplicações da extensão et até à ruína Vb o teor volumétrico em ligante Considera-se ligante a soma do betume e de RAR

Os resultados indicam ser previsível uma resistência à fadiga de cerca de 41,7% da obtida pela aplicação da lei da Shell considerando como ligante a soma de betume e de RAR

Adaptado de Sousa et al (2021)

Inovação em Pavimentação Misturas Beturninosas com Borracha Reagida e Ativada (RARI)


RECOMENDAÇÕES PARA PROJECTO- RESISTÊNCIA À PROPAGAÇÃO DE FENDAS

An Overlay Design Method for Reflective Cracking

Jorge C. Pais*, Jorge B. Sousa**, George B. Way***, and Richard N. Stubstad****

- * University of Minho Department of Civil Engineering, 4800 Guimarães - Portugal JPais@Eng.UMinho.pt
- ** Consulpav Portugal
 Taguspark Tecnologia I, n°26, 2780 Oeiras Portugal
 JmbSousa@AOL.com
- *** Arizona Department of Transportation, Materials Section 1221 North 21st Avenue – MD 068R Phoenix Arizona 85009-3740, USA GWay516855@AOL.com
- ****Consulpav International
 P.O. Box 700
 Oak View, California 93022 USA
 Stubstad@AOL.com

- As metodologias actualmente utilizadas em Portugal no projecto de pavimentos não permitem avaliar a resistência à propagação de fendas
- A metodologia proposta por equipa liderada pela Universidade do Minho:
 - foi desenvolvida com base em cálculos pelo método dos elementos finitos
 - a previsão da actividade das fendas foi calibrada com medições "in situ"
 - foi realizado um ajustamento para atender ao desempenho "in situ"
 - considera diferentes níveis de fendilhamento
 - usa as características de deformabilidade obtidas em ensaios de carga

